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ABSTRACT

Recent advances in high-performance computing have pushed computational capabilities to a petaflop (a
thousand trillion operations per second) in a single computing cluster. This breakthrough has been hailed
as a way to fundamentally change science and engineering by letting people perform experiments that were
previously beyond reach. But for those interested in exploring the I/O behavior of their simulation model,
efficient experimental design has a much higher payoff at a much lower cost. A well-designed experiment
allows the analyst to examine many more factors than would otherwise be possible, while providing insights
that cannot be gleaned from trial-and-error approaches or by sampling factors one at a time. We present the
basic concepts of experimental design, the types of goals it can address, and why it is such an important
and useful tool for simulation. Ideally, this tutorial will entice you to use experimental designs in your
upcoming simulation studies.

1 INTRODUCTION

In June 2008, a new supercomputer called the ”Roadrunner” was unveiled. This bank of machines was
assembled from components originally designed for the video game industry; it costs $133 milion, and is
capable of doing a petaflop (a thousand trillion operations per second). The New York Times coverage
included the following description: “By running programs that find a solution in hours or even less
time. compared with as long as three months on older generations of computers, petaflop machines like
Roadrunner have the potential to fundamentally alter science and engineering, supercomputer experts say.
Researchers can ask questions and receive answers virtually interactively and can perform experiments
that would previously have been impractical” (Markoff 2008).

Yet let’s take a closer look at the practicality of a brute-force approach to simulation experiments.
Suppose a simulation has 100 factors, each factor has two levels (say, low and high) of interest, and we
decide to look at each combination of these 100 factors. Even with a petaflop computer and a simulation
that runs as fast as a single operation, running a single replication of this experiment would take over 40
million years!

Efficient design of experiments can break this curse of dimensionality at a tiny fraction of the cost. For
example, suppose we want study 100 factors and all their two-way interactions. We can use a resolution
5 fractional factorial (described in Section 3.3). How quickly can we finish the experiment? On a desktop
computer with a simulation that takes a full second to run, each replication of this experiment takes under
9.5 hours; even if the simulation takes a more reasonable one minute to run, we can finish this experiment
on an 8-core desktop (under $3,000) in 2.85 days. Other designs are even more efficient, and provide more
detailed insights into the simulation model’s behavior.

The field called Design of Experiments (DOE) has been around for a long time. Many of the classic
experimental designs can be used in simulation studies. We discuss a few in this paper to explain the concepts
and motivate the use of experimental design. However, the settings in which real-world experiments are
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Sanchez and Wan

performed can be quite different from the simulation environment, so a framework specifically geared
toward simulation experiments is beneficial.

Before undertaking a simulation experiment, it is useful to think about why this the experiment is
needed. Simulation analysts and their clients might seek to (i) develop a basic understanding of a particular
simulation model or system, (ii) find robust decisions or policies, or (iii) compare the merits of various
decisions or policies (Kleijnen et al. 2005). The goal will influence the way the study should be conducted.

We focus on setting up single-stage experiments to address the first goal, and touch briefly on the
second. Although the examples in this paper are very simple simulation models, the same types of designs
have been extremely useful for investigating more complex simulation models in a variety of application
areas. For a detailed discussion of the philosophy and tactics of simulation experiments, a more extensive
catalog of potential designs (including sequential approaches), and a comprehensive list of references, see
Kleijnen et al. (2005), Kleijnen (2007), Chapter 12 of Law (2007), or Sanchez (2008).

The benefits of experimental design are tremendous. Once you realize how much insight and information
can be obtained in a relatively short amount of time from a well-designed experiment, DOE should become
a regular part of the way you approach your simulation projects.

2 BASIC CONCEPTS

2.1 Definitions and Notation

One of the first things an experimenter or tester must do to design a good experiment is identify the
experimental factors. In DOE parlance, factors are the input (or independent) variables that might have
some impact on responses (i.e., experimental outputs). In general, an experiment might have many factors,
each of which might assume a variety of values, called levels of the factor in DOE. A primary goal of many
DOEs is to identify which of the factors are really important for which responses, and which are not and
can thus be dropped from further consideration, greatly reducing the experimental effort and simplifying
the task of interpreting the results. Also, of the important factors, we would like to identify the nature of
the impact on the responses (e.g., increasing, linear, quadratic), and whether the levels of some factors
influence the effects that other factors have (called factor interactions).

To identify good (or even appropriate) designs, it is often useful to classify the factors along several
dimensions:

• Quantitative or qualitative. Quantitative factors naturally take on numerical values, while qualitative
factors do not (though they might be assigned numeric coded values).

• Discrete or continuous (quantitative factors only). Discrete factors can have levels only at certain
separated values; an example would be the number of x-ray machines in a hospital, which would
have to be a non-negative integer, presumably with some upper bound. Continuous factors can
assume any real value, perhaps within some range, such as the speed at which a vehicle is operated.

• Binary or not. Binary factors are naturally constrained to just two levels, like the classification of
a part as either defective or non-defective. Non-binary factors could take on more than two values,
but might still be tested at only two levels, typically “low” and “high,” or might be allowed to
assume (many) more than two levels in the experiment.

• Controllable or uncontrollable. In a simulation experiment all factors are manipulated and controlled,
but in reality factors might be controllable or not. For example, the degree or nature of enemy
jamming of a communications system would be controlled in a simulation, but not in an actual
fight. This can affect how the experimenter interprets the estimates of the effects of factors.

Throughout this paper, simulation model denotes any model that is evaluated using a computer.
Simulation models come in many flavors. There are deterministic simulations (e.g., numerical solutions
of differential equations, where the same set of inputs always produces the same output) and stochastic
simulations (where the same set of simulation inputs may produce different output unless the random-
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number streams are carefully controlled). Simulations that model a process that occurs over time can also
be characterized as terminating or non-terminating, depending on the stopping conditions. For ease of
presentation we assume that terminating simulations are used; the simulation stops after either a pre-specified
amount of simulation time has elapsed, or when a specific event or condition occurs.

Mathematically, let X1, . . . ,Xk denote the k factors in our experiment, and let Y denote a response
of interest. Sometimes graphical methods are the best way to gain insight about the Y ’s, but often we
are interested in constructing response surface metamodels that approximate the relationships between the
factors and the responses with statistical models (typically regression models).

First, suppose that the Xi’s are all quantitative, although they can be discrete or continuous. A main-effects
model means we assume

Y = β0 +
k

∑
i=1

βiXi + ε, (1)

where the ε’s are independent random errors with mean zero. Ordinary least-squares regression assumes
that the ε’s in (1) are also identically distributed, but the regression coefficients are still unbiased estimators
of the βi even if the underlying variance is not constant.

To explore any quadratic effects, we will include terms like X2
1 as potential explanatory variables for

Y . Similarly, two-way interactions are terms like X1X2. A second-order model includes quadratic effects
and two-way interactions, although it is best for numerical stability to fit this after centering the quadratic
and interaction terms, as in (2):

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βi,i(Xi−X i)
2 +

k−1

∑
i=1

k

∑
j=i+1

βi, j(Xi−X i)(X j−X j)+ ε. (2)

Some statistical packages do this centering automatically.
It is worth noting that regression can also be used when some of the X’s are qualitative—in fact, the

ANOVA (analysis of variance) technique commonly used for experimental designs with qualitative X’s is
a special case of regression.

A design is a matrix where every column corresponds to a factor, and the entries within the column are
settings for this factor. Each row represents a particular combination of factor levels, and is called a design
point. If the row entries correspond to the actual settings that will be used, these are called natural levels.
Coding the levels in a standardized way is a convenient way to characterize a design. Different codes are
possible, but for quantitative data the low and high levels are often coded as −1 and +1, respectively, for
arithmetic convenience. Table 1 shows a simple design, in both natural and coded levels, that could be
used for an experiment involving two factors.

Table 1: Experimental design in natural and coded levels.

Natural Levels Coded Levels
Design
Point X1 X2 X1 X2

1 16 20 −1 −1
2 18 20 +1 −1
3 16 22 −1 0
4 18 22 +1 0
5 16 24 −1 +1
6 18 24 +1 +1

Each repetition of the whole design matrix is called a replication and we generally assume that the
replications are independent. Let nd be the number of design points, and nr be the number of replications.
Then the total number of experimental units is ntot = ndnr.
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2.2 Pitfalls to Avoid

Two common types of simulation studies are ill-designed experiments. The first can occur if several people
each suggest an “interesting” combination of factor settings, so a handful of design points end up being
explored where many levels change simultaneously. Consider an agent-based simulation model of the
child’s game, where two teams (blue and red) each try to “capture the flag” of the opposition. Suppose that
only two design points are used, corresponding to different settings for the speed (X1) and stealth (X2) of
the blue team, with the results in Figure 1. (Instead of providing numerical response values, a blue circle
is used to represent a “good” average outcome for the blue team, while a red square represents a “bad”
average outcome.) One person might claim these results show that high stealth is of primary importance,
another that speed is the key to success, and a third that they are equally important. There is no way to
resolve these differences of opinion without collecting more data. In statistical terms, the effects of stealth
and speed are said to be confounded. In practice, simulation models easily have dozens or hundreds of
potential factors. A handful of haphazardly chosen scenarios, or a trial-and-error approach, can use up a
great deal of time without addressing the fundamental questions.

Speed
St

ea
lth

Speed Stealth Success?
Low Low No
High High Yes

Figure 1: Confounded factor effects for capture-the-flag.

The second type of study that can be problematic occurs when people start with a “baseline” scenario
and vary one factor at a time. Revisiting the capture-the-flag example, suppose the baseline corresponds
to low stealth and low speed. Varying each factor, in turn, to its high level yields the results of Figure 2. It
appears that neither factor is important, so someone using the simulation results to decide how to choose
a team would not know how (or if) to proceed.

Speed

St
ea

lth

Speed Stealth Success?
Low Low No
High Low No
Low High No

Figure 2: One-at-a-time sampling for capture-the-flag.

If all four combinations of speed and stealth (low/low, low/high, high/low, and high/high) are sampled,
it is clear that success requires both high speed and high stealth. This means the that factors interact—and
if there are interactions, one-at-a-time sampling will never uncover them!

The pitfalls of using a poor design seem obvious on this toy problem, but the same mistakes are made
far too often in larger studies of more complex models. When only a few variations from a baseline are
conducted, there may be many factors that change but a few that decision makers think are “key.” If they
are mistaken, changes in performance from the baseline scenario may be attributed to the wrong factors.
Similarly, many analysts change one factor at a time from their baseline scenario, but fail to understand that
this approach implicitly assumes that there are no interaction effects. This assumption may be unreasonable
unless the region of exploration is very small.
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2.3 Choosing Factors

Potential factors in simulation experiments include the input parameters or distributional parameters of a
simulation model. For example, a simulation model of a repair facility might have both quantitative factors
(such as the number of mechanics of different types, or the mean time for a particular task) and qualitative
factors (such as priority rules).

Generating a list of the potential inputs to a simulation model is one way of coming up with an initial
factor list. However, factors need not correspond directly to simulation inputs. For example, suppose two
inputs are the mean times µ1 and µ2 required for a specific agent to process messages from class 1 and
class 2, respectively, where message class 1 is considered more complex than message class 2. Varying
µ1 and µ2 independently may either result in unrealistic situations where µ1 < µ2, or require the analyst
to select narrow factor ranges. Instead, we could use µ1 as one factor to represent the capabilities of the
agent, and vary the ratio µ2/µ1 over a range of interesting values (say, 0.4 to 0.9) to represent the relative
difference in message complexity.

2.4 Sample-Size Issues

In live experiments, where data are extremely expensive, the total sample size is often very small. This
affects the choice of an experimental design as well as the number of replications.

In simulation experiments, where a major portion of the effort often occurs in model development, the
total sampling budget may not be so constrained. This increases the set of potential designs that can be
used, and it may be possible to generate a great deal of information (even hundreds of thousands of runs)
in a relatively short time. We discuss this further in Section 3.

2.5 Non-terminating Simulations

Different types of simulation studies involve different types of experimental units. For a static Monte
Carlo simulation, where no aspect of time is involved, the experimental unit is a single observation. For
time-stepped or discrete-event stochastic simulation studies, it more often is a run or a batch, yielding
an averaged or aggregated output value. When runs form the experimental units for non-terminating
simulations, and steady-state performance measures are of interest, care must be taken to delete data during
the simulation’s warm-up period before performing the averaging or aggregation. Details may be found in
any simulation textbook, such as Law (2007), Kelton et al. (2007), or Banks et al. (2005).

3 POTENTIAL EXPERIMENTAL DESIGNS

Many designs are available in the literature. We focus on a few basic types that we have found particularly
useful for simulation experiments. Factorial or gridded designs are straightforward to construct and readily
explainable—even to those without statistical backgrounds. Coarse grids (2k factorials) are most efficient
if we can assume that the simulation response is well-fit by a model with only linear main effects and
interactions, while fine grids (more than two levels for factors) provide greater detail about the response and
greater flexibility for constructing metamodels of the responses. When the number of factors is large, then
more efficient designs are required. We have found Latin hypercubes to be good general-purpose designs
for exploring complex simulation models when little is known about the response surfaces. Two-level
designs called resolution 5 fractional factorials (R5-FFs) allow the linear main effects and interactions
of many factors to be investigated simultaneously; they are potential choices either when factors have
only two qualitative settings, or when practical considerations dictate that only a few levels be used for
quantitative input factors. Expanding these R5-FFs to central composite designs provides some information
about nonlinear behavior in simulation response surfaces.

Factorials (or gridded designs) are perhaps the easiest to discuss: they examine all possible combinations
of the factor levels for each of the Xi’s. A shorthand notation for the design is mk, which means k factors
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are investigated, at m levels for each factor, in a total of mk design points. We can write designs where
different sets of factors are investigated at different numbers of levels as, e.g., mk1

1 ×mk2
2 , where k1 factors

are evaluated at m1 levels each, and another k2 factors are evaluated at m2 levels each. These are sometimes
called crossed designs. For example, the design in Table 1 is a 21×31 factorial experiment.

3.1 2k Factorial Designs (Coarse Grids)

The simplest factorial design is a 2k because it requires only two levels for each factor. These can be low
and high, often denoted−1 and +1 (or− and +). 2k designs are very easy to construct. Start by calculating
the number of rows N = 2k. The first column alternates −1 and +1, the second column alternates −1 and
+1 in groups of 2, the third column alternates in groups of 4, and so forth by powers of 2. Conceptually, 2k

factorial designs sample at the corners of a hypercube defined by the factors’ low and high settings. Figure 3
shows examples for 22 and 23 designs. Envisioning a 24 or larger design is left to the hyperimaginative
reader.

X1 X1

X2X2

X3

Figure 3: 22 and 23 factorial designs.

Factorial designs have several nice properties. They let us examine more than one factor at a time, so
they can be used to identify important interaction effects. They are also orthogonal designs: the pairwise
correlation between any two columns (factors) is equal to zero. This simplifies the analysis of the output (Y ’s)
we get from running our experiment, because estimates of the factors’ effects (β̂i’s) and their contribution
to the explanatory power (R2) of the regression metamodel will not depend on what other explanatory terms
are present in the regression metamodel.

From Table 2, there are seven different terms (three main effects, two two-way interactions, and one
three-way interaction) that we could consider estimating from a 23 factorial experiment. But since we also
want to estimate the intercept (overall mean), that means there are eight things we could try to estimate
from eight data points. That will not work—we will always need at least one degree of freedom (d.f.) for
estimating error (and preferably, a few more).

Table 2: Terms for a 23 factorial design.
Design Term
Point 1 2 3 1,2 1,3 2,3 1,2,3

1 −1 −1 −1 +1 +1 +1 −1
2 +1 −1 −1 −1 −1 +1 +1
3 −1 +1 −1 −1 +1 −1 +1
4 +1 +1 −1 +1 −1 −1 −1
5 −1 −1 +1 +1 −1 −1 +1
6 +1 −1 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1 +1 −1
8 +1 +1 +1 +1 +1 +1 +1

A similar relationship holds as we increase the number of factors k. There will be k main effects,(k
2

)
= k!

2!(k−2)! two-way interactions,
(k

3

)
three-way interactions, and so forth, up to a single k-way interaction.

Adding all these up yields 2k−1 terms plus the intercept. Once again, there will not be any d.f. left over
for error estimation.
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So, what do people do with a factorial design? One possibility is to replicate the design to get more
d.f. for error. Estimating eight effects from eight observations (experimental units) is not possible, but
estimating eight effects from 16 observations is simple. Replication also makes it easier to detect smaller
effects by reducing the underlying standard errors associated with the estimates of the β ’s.

Another option is to make simplifying assumptions. The most common approach is to assume that
some higher-order interactions do not exist. In the 23 factorial of Table 2, one d.f. would be available
for estimating error if the three-way interaction could safely be ignored. We could then fit a second-order
regression model to the results. Similarly, if we have data for a single replication of a 24 factorial design
but can assume there is no three-way or four-way interactions, we have five d.f. for error estimation.

Making simplifying assumptions sounds dangerous, but it is often a good approach. Over the years,
statisticians conducting field experiments have found that often, if there are interactions present, the main
effects also show up unless you “just happen” to set the low and high levels so the effects cancel. There is
also a rule of thumb stating that the magnitudes of two-way interactions are at most about 1/3 the size of
main effects, and the magnitudes of three-way interactions are at most about 1/3 the size of the two-way
interactions, etc. Whether or not this holds for experiments on simulations of complex systems is not yet
certain. We may expect to find stronger interactions in a simulation of a supply chain or humanitarian
assistance operations than when growing potatoes.

3.2 mk Factorial Designs (Finer Grids)

Examining each of the factors at only two levels (the low and high values of interest) means we have
no idea how the simulation behaves for factor combinations in the interior of the experimental region.
Finer grids can reveal complexities in the landscape. When each factor has three levels, the convention
is to use -1, 0 and 1 (or −, 0, and +) for the coded levels. Consider the capture-the-flag example once
more. Figure 4 shows the (notional) results of two experiments: a 22 factorial (on the left) and an 112

factorial (on the right). For the 22 factorial, all that can be said is that when speed and stealth are both
high, the agent is successful. Much more information is conveyed by the 112 factorial: here we see that
if the agent can achieve a minimal level of stealth, then speed is more important. In both subgraphs the
blue circles—including the upper right-hand corner—represent good results, the tan triangles in the middle
represent mixed results, and the red squares on the left-hand side and bottom represent poor results.

SpeedSpeed

St
ea

lth

St
ea

lth

Figure 4: 22 and 112 factorial designs for capture-the-flag.

A scatterplot matrix of the design points shows projections of the full design onto each pair of factors.
Consider the left-most graph in Figure 5 for a 24 factorial. This graph contains cells of subplots of the
design points for pairs of factors at a time. For instance, the third cell over in the top row plots the (X3,X1)
factor combinations; the third cell down in the left column is just its transpose, plotting the pairs (X1,X3),
so carries the same information. The second graph in Figure 5 contains the scatterplot matrix for a 44 factorial.

The larger the value of m for an mk factorial design, the better its space-filling properties. Yet despite
the greater detail provided, and the ease of interpreting the results, fine grids are not suitable for more than
a handful of factors because of their massive data requirements. Considering the number of high-order
interactions we could fit but may not believe are important (relative to main effects and two-way or possibly
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Figure 5: Scatterplot matrices for selected factorial and NOLH designs.

three-way interactions), this seems like a lot of wasted effort. It means we need smarter, more efficient
types of experimental designs if we are interested in exploring many factors.

3.3 2k−p Resolution 5 Fractional Factorial Designs

Sometimes many factors take on only a few levels. In these cases, we can consider variations of gridded
designs. If we are willing to assume that some high-order interactions are not important, we can cut down
(perhaps dramatically) the number of runs required. This will be illustrated using a 2k factorial, but the
same ideas hold for other situations. Consider the 23 design in Table 2, and suppose that we are willing
to assume that no interactions exist. We could call the X1X2X3 column X4, and investigate four factors in
23 = 8 runs instead of four factors in 16 runs! This is called a 24−1 fractional factorial. The potential for
reducing the total number of runs increases with k.

Better yet, as long as we are assuming no interactions, we can squeeze a few more factors into the
study. Take Table 2, which shows all the interaction patterns for a 23 factorial, and substitute in a new
factor for each interaction term. The resulting design (Table 3) is called a 27−4 fractional factorial, because
the base design varies seven factors in only 27−4 = 8 runs instead of 27 = 128 runs! X4 uses the column that
would correspond to an X1X2 interaction, X5 uses the column that would correspond to an X1X3 interaction,
and so on. The design is said to be saturated since we cannot squeeze in any other factors. If we ignore
the last column (i.e., we do not have an X7) then we can examine six factors in only eight runs. If we take
b = 2 replications, we can examine seven factors in only 16 runs.

Table 3: Terms for a 27−4 fractional factorial design.
Design X1 X2 X3 X4 X5 X6 X7
Point (1,2) (1,3) (2,3) (1,2,3)

1 −1 −1 −1 +1 +1 +1 −1
2 +1 −1 −1 −1 −1 +1 +1
3 −1 +1 −1 −1 +1 −1 +1
4 +1 +1 −1 +1 −1 −1 −1
5 −1 −1 +1 +1 −1 −1 +1
6 +1 −1 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1 +1 −1
8 +1 +1 +1 +1 +1 +1 +1

Graphically, fractional factorial designs sample at a carefully-chosen fraction of the corner points on the
hypercube. The left-most cube in Figure 6 shows the sampling for a 23−1 factorial design, i.e., investigating
three factors, each at two levels, in only 23−1 = 4 runs. There are two points on each of the left and right
faces of the cube, and each of these faces has one instance of X2 at each level and one instance of X3 at
each level, so we can isolate the effect for factor X1. Similarly, averaging the results for the top and bottom
faces allows us to estimate the effect for factor X2, and averaging the results for the front and back faces
allows us to estimate the effect for factor X3.

Saturated or nearly-saturated fractional factorials are often called screening designs because they can
be useful for eliminating factors that are unimportant. They are very efficient (relative to full factorial
designs) when there are many factors. For example, 64 runs could be used for a single replication of a
design involving 63 factors, or two replications of a design involving 32 factors. Screening designs that
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allow only main effects to be estimated are called resolution 3 fractional factorials (R3-FFs); designs that
provide valid estimates of main effects in the presence of two-way interactions (without allowing the analyst
to estimate the interaction effects) are called resolution 4 fractional factorials (R4-FFs).

Saturated or nearly saturated fractional factorials are also very easy to construct. However, these designs
will not do a good job of revealing the underlying structure of the response surface if there truly are strong
interactions but we ignore them when setting up the experiment. A compromise is to use R5 fractional
factorials. These allow two-way interactions to be explored but can require many fewer design points than
full factorials. Until recently it was difficult to find a very efficient R5-FF for more than about a dozen
factors. The largest R5-FF in Montgomery (2005) is a 210−3; the largest in Box, Hunter, and Hunter (2005)
and NIST/Sematech (2006) is a 211−4. Sanchez and Sanchez (2005) recently developed a method, based
on discrete-valued Walsh functions, for rapidly constructing very large R5-FFs—a short program generates
designs up to a 2120−105 in under a minute. These allow all main effects and two-way interactions to be
fit, and may be more useful for simulation analysts than saturated or nearly-saturated designs.

3.4 Central Composite Designs

Because 2k factorials or fractional factorials sample each factor at only two levels, they are very efficient
at identifying slopes for main effects or two-way interactions. Unfortunately, sampling at only two levels
means the analyst has no idea about what happens to the simulation’s response in the middle of the factor
ranges. Going to a 3k factorial would let us estimate quadratic effects, but it takes quite a bit more
data—especially if k is large!

X2

X1

X3

Factorial or Fractional
Factorial

Central Composite
Design

Star  Points+ =

}
Fractional Factorial or Factorial               +       Star Points   =   Central Composite Design. 

Figure 6: Construction of central composite designs.

Another classic design that lets the analyst estimate all full second-order models (i.e., main effects,
two-way interactions, and quadratic effects) is called a central composite design (CCD). Start with a 2k

factorial or R5 2k−p fractional factorial design. Then add a center point and two “star points” for each of
the factors. In the coded designs, if −1 and +1 are the low and high levels, respectively, then the center
point occurs at (0,0, ...,0), the first pair of star points are (−c,0, ...,0) and (c,0, ...,0); the second pair of
star points are (0,−c,0, ...,0) and (0,+c,0, ...,0), and so on. A graphical depiction of a CCD for three
factors appears in Figure 6. If c = 1 the star points will be on the face of the cube, but other values of c
are possible.

Although the CCD adds more star points when there are more factors, using a fractional factorial as
the basic design means the CCD has dramatically fewer design points than a 3k factorial design for the
same number of factors. For example, using the efficient R5-FFs of Sanchez and Sanchez (2005) as the
base designs, a CCD for 10 factors requires 152 design points, while a 310 factorial requires over 59000
design points. The additional requirements grow only linearly with k.

3.5 Nearly Orthogonal Latin Hypercube Designs

Latin hypercube (LH) designs provides a flexible way of constructing efficient designs for quantitative
factors. They have some of the space-filling properties of factorial designs with fine grids, but require orders
of magnitude less sampling. Once again, let k denote the number of factors, and let m≥ k denote the number
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of design points. The factor levels can be coded as m equally-spaced values {−1,−m−2
m−1 ,−

m−3
m−1 , . . . ,

m−2
m−1 ,1}.

A random LH design means that each column of the design matrix is a random permutation of these m
values, and can be constructed for any number of factors k provided that m≥ k, but collinearity problems
often arise unless m >> k.

Figure 7 lists a random LH with k = 2 and m = 11, and provides a picture of results that might arise
by using this experimental design for our capture-the-flag simulation. Compare this design to those of
Figure 4. Unlike the 22 factorial design, the LH design provides some information about what happens in
the center of the experimental region, but requires far less effort than the 112 factorial design.

Speed

St
ea

lth

Speed Stealth
1
3
7
2
5
6

11
5
7
3
10
4
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1
2
8
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Figure 7: Random Latin hypercube for capture-the-flag.

Cioppa and Lucas (2007) construct nearly orthogonal Latin hypercube (NOLH) designs that have good
space-filling and orthogonality properties for small or moderate k (k ≤ 29). These designs are not square,
but the number of design points are radically fewer than the numbers for the gridded designs discussed
before For example, 20 factors can be explored in an NOLH with only 129 design points, as compared to
over one million design points needed for a 220 factorial.

Scatterplot matrices of four different designs are shown in Figure 5. These are a 24 factorial design, a
44 factorial design, an NOLH design with 17 design points, and an NOLH design with 257 design points.
The two-dimensional space-filling behavior of the NOLH compares favorably with that of the 44 factorial
for roughly 1/15 the computational effort, so experimenters concerned about the level of computational
effort might prefer the latter. Alternatively, experimenters considering the use of the 44 factorial (and thus
willing to run 256 design points) might prefer the NOLH with 257 design points (just one more)—and
gain the ability to examine a much denser set of factor-level combinations, as well as explore up to 25
additional factors using the same design! The benefits of LH sampling are greatest for large k. Assuming
that a single design point takes one second to run, each replication of a 29-factor experiment would take
under five minutes using an NOLH design, but over 17 years using a 229 factorial design.

3.6 Robust Design Methods

A distinction can be made between decision factors that can be controlled in the real world, and noise
factors that cannot be controlled during actual operations. For example, in a simulation of search-and-rescue
operations after a natural disaster, the decision factors might include the communication systems, available
equipment, or number of people on the rescue team. Noise factors might include weather conditions, the
number and location of those in need of rescue, and the skill levels of the emergency medical technicians.
An alternative to an exploratory analysis that seeks to understand how these noise factors affect the responses
is a robust design approach, where the goal of the experiment(s) is to identify design points that yield
good performance across the range of noise factor settings—in other words, to identify robust systems,
rather than systems that are effective only against specific threat and environmental conditions. The robust
design philosophy was pioneered by Taguchi (1987) for manufactured-product design, where it has been
successfully used to achieve high-quality products while keeping costs in line; it also facilitates the evaluation
of trade-offs between quality and cost. An important consideration for the simulation community is that the
robust design philosophy explicitly requires analysts to consider variances, as well as means, in assessing
system performance. Applying robust design principles to simulation experiments is discussed in Sanchez
(2000). A more detailed discussion and examples appear in Kleijnen et al. (2005), where identifying robust
systems and processes is considered one of three primary goals of simulation experiments.
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3.7 Sequential Screening Methods

When the number of factors is very large, then sequential screening approaches may be of interest. These
typically make stronger assumptions about the nature of the response surface, but are useful for quickly
eliminating unimportant factors so that future experiments can focus on those that seem important. Sequential
screening procedures can be more efficient than single-stage screening procedures. Two procedures of
particular interest are controlled sequential bifurcation (CSB) procedure (Wan et al. 2006) and a variant
called CSB-X (Wan et al. 2008). These procedures have the important property of providing guaranteed
limits on the probabilities of observing false positives and false negatives when screening for important
factors. Sequential approaches we find particularly useful for simulation experiments are fractional factorial
controlled sequential bifurcation (F-CSB) and a variant called FFCSB-X (Sanchez, Wan, and Lucas 2009),
and the hybrid method (Wan et al. 2009). Although these methods are heuristic, they nonetheless have been
shown to have very good properties in terms of both efficiency and effectiveness. Unlike CSB and CSB-X,
these latter procedures do not require a priori knowledge of the direction of factor effects, which makes
them suitable for screening factors in simulation models of complex systems where little subject-matter
expertise exists. Screening experiments are often followed up with more detailed experiments involving
those factors identified as important.

3.8 Design-of-Experiment Based Simulation Optimization

Response Surface Methodology (RSM) was introduced in the early 50’s by Box and Wilson (1951) and has
been extensively used in industry to select the optimal operating conditions or product designs (Myers and
Montgomery 2002). RSM uses a sequence of polynomial models to approximate the underlying response
surface and approach the optimal region. One of the biggest advantages of RSM is its generality. An
arsenal of well-studied statistical tools such as regression analysis, design of experiments, and ANOVA can
be incorporated in its framework. Since simulation models representing real world systems can be very
complex, the local simplified metamodel approach is appealing. Early applications of RSM in simulation
were reported in Biles (1975) and Kleijnen (1975) . However, two issues need to be solved. Firstly, RSM
is not automated. Human intervention is required to determine the local region and appropriate design for
each iteration. Secondly, RSM is heuristic, and the quality of the solution cannot be quantified. To mitigate
these problems, Chang et al. (2007, 2009) propose the Stochastic Trust Region Response Surface Method
(STRONG) for simulation optimization. It combines the RSM framework with the trust region method
(developed for deterministic optimization). At each iteration, the local optimization is restricted within a
trust region to guarantee the reliability of the solution. If the metamodel does not fit the response well or the
new solution fails to give sufficient improvement, the trust region will shrink, and vice versa. This approach
eliminates the requirement of human intervention and leads to competitive asymptotic convergence property
of STRONG. More importantly, the framework allows the incorporation of various experimental designs
to improve the efficiency of optimization. Numerical evaluations show that this can significantly improve
the efficiency of simulation optimization (Chang et al. 2007, 2009).

4 DESIGN COMPARISONS

In Figure 8 (from Sanchez 2008) we provide some guidance about experimental designs for simulation
experiments. This list is not intended to be exhaustive, but we hope that it will help experimenters identify
some suitable designs for particular contexts. A version of this chart is maintained at the SEED Center
web pages (http://harvest.nps.edu), and updated as new designs become available to fill some of the gaps.
All acronyms are defined on the web site.

Selecting a design is an art, as well as a science. Clearly, the number of factors and the mix of different
factor types (binary, qualitative or discrete with a limited number of levels, discrete with many levels,
or continuous) play important roles. But these are rarely cast in stone—particularly during exploratory
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Figure 8: Design comparison chart.

analysis. The experimenter has control over how factors are grouped, how levels are determined, etc. Even
if these are specified, different experimenters may prefer different designs.

5 GAINING INSIGHT AND FINDING OUT MORE

We believe the following are three basic goals of simulation experiments: (i) developing a basic understanding
of a particular simulation model or system; (ii) finding robust decisions or policies; and (iii) comparing
the merits of various decisions or policies (Sanchez and Lucas 2002; Kleijnen et al. 2005). Experimental
design approaches, coupled with analytic and graphical methods such as response-surface methodology
and data-mining techniques, can be useful for all these goals. By identifying important factors, interactions,
and nonlinear effects, the experimenter can improve their understanding, find robust solutions, or raise
questions to be explored in subsequent experiments. Thresholds, plateaus, or other interesting features of
the response surfaces might provide guidance about situations that are particularly good (or particularly
bad).

For more on the philosophy and tactics of designing simulation experiments, examples of graphical
methods that facilitate gaining insight into the simulation model’s performance, and an extensive literature
survey, we refer the reader to Kleijnen et al. (2005).

Books that discuss experimental designs for simulation include Santner, Williams, and Notz (2003),
Law (2007), and Kleijnen (2007). Note that their goals for those performing simulation experiments may
differ from those in this paper. For experiments where it is very time-consuming to run a single replication,
there are other single-stage designs (often used for physical experiments) that require fewer runs than
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fractional factorial designs. Some of these designs appear in the above references; others can be found in
experimental design texts such as Box, Hunter and Hunter (2005), Montgomery (2006), or Ryan (2007).

A more detailed discussion of how simulation experiments might be used to assist with planning live
tests (physical experiments) appears in Sanchez (2008), which is the source of Figure 8 . This also contains
a flowchart of the initial design process, and specific examples of different types of designs that could be
used for an experiment involving 14 factors, as a way of illustrating the tradeoffs made in the “art” of
choosing an appropriate experimental design.

Finally, the benefits of efficient experimental design are often more tangible if you see how they are
used in practice. Designs like the ones described in this paper have assisted the U.S. military and several
allied countries in a series of international data farming workshops (Horne and Meyer 2004; SEED Center
for Data Farming 2008). Interdisciplinary teams of officers and analysts develop and explore agent-based
simulation models to address questions of current interest to the U.S. military and allies, such as network-
centric operations, effective use of unmanned vehicles, peace support operations, and more. Sanchez and
Lucas (2002) provide an overview of issues in modeling and analysis aspects of agent-based simulation. A
humanitarian assistance scenario is discussed in Kleijnen et al. (2005). Lucas et al. (2007) describe several
defense and homeland security applications: critical infrastructure protection, non-lethal capabilities in a
maritime environment, and emergency first response to a crisis event. The website of the SEED (Simulation
Experiments & Efficient Design) Center for Data Farming (at harvest.nps.edu) also has links to many
papers, both methodological and application-oriented, as well as spreadsheets and software for NOLH and
R5-FF designs; this website is updated on a fairly regular basis.

6 CONCLUSIONS

The process of building, verifying, and validating a simulation model can be arduous—but once complete,
then it is time to have the model work for you. One extremely effective way of accomplishing this is to use
experimental designs to help explore your simulation model. This tutorial has touched on a few designs
that we have found particularly useful, but other design and analysis techniques exist. Our intent was to
open your eyes to the benefits of DOE, and convince you to make your next simulation study a simulation
experiment. As we have shown, if you are interested in exploring the behavior of a simulation model with
more than a handful of input factors, efficient experimental designs are readily available—and much more
powerful—than a petaflop supercomputer.
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